Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Angew Chem Int Ed Engl ; : e202401359, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597885

RESUMO

The skeletal editing of azaarenes through insertion, deletion, or swapping of single atoms has recently gained considerable momentum in chemical synthesis. Here, we describe a practical skeletal editing strategy using vinylcarbenes in-situ generated from trifluoromethyl vinyl N-triftosylhydrazones, leading to the first dearomative skeletal editing of pyrroles through carbon-atom insertion. Furthermore, depending on the used catalyst and substrate, three types of peripheral editing reactions of pyrroles are also disclosed: α- or γ-selective C-H insertion, and [3+2] cycloaddition. These controllable molecular editing reactions provide a powerful platform for accessing medicinally relevant CF3-containing N-heterocyclic frameworks, such as 2,5-dihydropyridines, piperidines, azabicyclo[3.3.0]octadienes, and allylated pyrroles from readily available pyrroles. Mechanistic insights from experiments and density functional theory (DFT) calculations shed light on the origin of substrate- or catalyst-controlled chemo- and regioselectivity as well as the reaction mechanism.

2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 942-950, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621901

RESUMO

Scorpio, a commonly used animal medicine in China, is derived from Buthus martensii as recorded in the Chinese Pharmacopoeia. China harbors rich species of Scorpionida and adulterants exist in the raw medicinal material and deep-processed products of Scorpio. The microscopic characteristics of the deep-processed products may be incomplete or lost during processing, which makes the identification difficult. In this study, the maximum likelihood(ML) tree was constructed based on the morphology and cytochrome C oxidase subunit I(COⅠ) to identify the species of Scorpio products. The results showed that the main adulterant of Scorpio was Lychas mucronatus. According to the specific SNP sites in the COⅠ sequence of B. martensii, the stable primers were designed for the identification of the medicinal material and formula granules of Scorpio. The polymerase chain reaction(PCR) at the annealing temperature of 61 ℃ and 30 cycles produced bright specific bands at about 150 bp for both B. martensii and its formula particles and no band for adulterants. The adaptability of the method was investigated, which showed that the bands at about 150 bp were produced for Scorpio medicinal material, lyophilized powder, and formula granules, and commercially available formula granules. The results showed that the established method could be used to identify the adulterants of Scorpio and its formula granules, which could help to improve the quality control system and ensure the safe clinical application of Scorpio formula granules.


Assuntos
Animais Venenosos , Medicamentos de Ervas Chinesas , Escorpiões , Animais , Reação em Cadeia da Polimerase/métodos
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621978

RESUMO

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Metionina/metabolismo , Metionina/farmacologia , Interleucina-10/genética , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , RNA Mensageiro/metabolismo
4.
J Nanobiotechnology ; 22(1): 132, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532378

RESUMO

BACKGROUND: Cardiovascular diseases (CVDs) have the highest mortality worldwide. Human pluripotent stem cells (hPSCs) and their cardiomyocyte derivatives (hPSC-CMs) offer a valuable resource for disease modeling, pharmacological screening, and regenerative therapy. While most CVDs are linked to significant over-production of reactive oxygen species (ROS), the effects of current antioxidants targeting excessive ROS are limited. Nanotechnology is a powerful tool to develop antioxidants with improved selectivity, solubility, and bioavailability to prevent or treat various diseases related to oxidative stress. Cerium oxide nanozymes (CeONZs) can effectively scavenge excessive ROS by mimicking the activity of endogenous antioxidant enzymes. This study aimed to assess the nanotoxicity of CeONZs and their potential antioxidant benefits in stressed human embryonic stem cells (hESCs) and their derived cardiomyocytes (hESC-CMs). RESULTS: CeONZs demonstrated reliable nanosafety and biocompatibility in hESCs and hESC-CMs within a broad range of concentrations. CeONZs exhibited protective effects on the cell viability of hESCs and hESC-CMs by alleviating excessive ROS-induced oxidative stress. Moreover, CeONZs protected hESC-CMs from doxorubicin (DOX)-induced cardiotoxicity and partially ameliorated the insults from DOX in neonatal rat cardiomyocytes (NRCMs). Furthermore, during hESCs culture, CeONZs were found to reduce ROS, decrease apoptosis, and enhance cell survival without affecting their self-renewal and differentiation potential. CONCLUSIONS: CeONZs displayed good safety and biocompatibility, as well as enhanced the cell viability of hESCs and hESC-CMs by shielding them from oxidative damage. These promising results suggest that CeONZs may be crucial, as a safe nanoantioxidant, to potentially improve the therapeutic efficacy of CVDs and be incorporated into regenerative medicine.


Assuntos
Cério , Miócitos Cardíacos , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Diferenciação Celular , Antioxidantes/farmacologia , Doxorrubicina/farmacologia
5.
Front Immunol ; 15: 1383464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545117

RESUMO

Background: Acanthopanax senticosus (AS) can improve sleep, enhance memory, and reduce fatigue and is considered as an effective drug for Alzheimer's disease (AD). The therapeutic effect and mechanism need to be further investigated. Methods: To confirm the AS play efficacy in alleviating memory impairment in mice, 5×FAD transgenic mice were subjected to an open-field experiment and a novelty recognition experiment. Network pharmacology technique was used to analyze the information of key compounds and potential key targets of AS for the treatment of AD, molecular docking technique was applied to predict the binding ability of targets and compounds, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also performed on the targets to derive the possible metabolic processes and pathway mechanisms of AS in treating AD. Quantitative real-time PCR (qRT-PCR) and western blot technique were carried out to validate the candidate genes and pathways. Results: In the open-field experiment, compared with the wild-type (WT) group, the number of times the mice in the AD group crossed the central zone was significantly reduced (P< 0.01). Compared with the AD group, the number of times the mice in the AS group crossed the central zone was significantly increased (P< 0.001). In the new object recognition experiment, compared with the WT group, the percentage of times the AD group explored new objects was significantly reduced (P< 0.05). Compared with the AD group, the AS group had an increase in the percentage of time spent exploring new things and the number of times it was explored (P< 0.05). At the same time, the donepezil group had a significantly higher percentage of times exploring new things (P< 0.01). By using network pharmacology technology, 395 common targets of AS and AD were retrieved. The Cytoscape software was used to construct the protein-protein interaction (PPI) network of common targets. Using the algorithm, nine key targets were retrieved: APP, NTRK1, ESR1, CFTR, CSNK2A1, EGFR, ESR2, GSK3B, and PAK1. The results of molecular docking indicate that 11 pairs of compounds and their corresponding targets have a significant binding ability, as the molecular binding energies were less than -7.0. In comparison to the AD group, the mRNA expression of the key target genes was significantly decreased in the AS treatment group (P< 0.001). The KEGG analysis showed that the MAPK signaling pathway was significantly enriched, and Western blot confirmed that the TRAF6 protein decreased significantly (P< 0.0001). Meanwhile, the levels of MAP3K7 and P38 phosphorylation increased, and there was also an increase in the expression of HSP27 proteins. Conclusion: Our study indicates that the multi-component and multi-target properties of AS play an important role in the alleviation of anxiety and memory impairment caused by AD, and the mechanism is involved in the phosphorylation and activation of the MAPK signaling pathway. The results of this study could provide a novel perspective for the clinical treatment of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Eleutherococcus , Animais , Camundongos , Fosforilação , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Transdução de Sinais , Disfunção Cognitiva/tratamento farmacológico
6.
Sci Transl Med ; 16(739): eadd8936, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507467

RESUMO

Glucocorticoids (GCs) are efficacious drugs used for treating many inflammatory diseases, but the dose and duration of administration are limited because of severe side effects. We therefore sought to identify an approach to selectively target GCs to inflamed tissue. Previous work identified that anti-tumor necrosis factor (TNF) antibodies that bind to transmembrane TNF undergo internalization; therefore, an anti-TNF antibody-drug conjugate (ADC) would be mechanistically similar, where lysosomal catabolism could release a GC receptor modulator (GRM) payload to dampen immune cell activity. Consequently, we have generated an anti-TNF-GRM ADC with the aim of inhibiting pro-inflammatory cytokine production from stimulated human immune cells. In an acute mouse model of contact hypersensitivity, a murine surrogate anti-TNF-GRM ADC inhibited inflammatory responses with minimal effect on systemic GC biomarkers. In addition, in a mouse model of collagen-induced arthritis, single-dose administration of the ADC, delivered at disease onset, was able to completely inhibit arthritis for greater than 30 days, whereas an anti-TNF monoclonal antibody only partially inhibited disease. ADC treatment at the peak of disease was also able to attenuate the arthritic phenotype. Clinical data for a human anti-TNF-GRM ADC (ABBV-3373) from a single ascending dose phase 1 study in healthy volunteers demonstrated antibody-like pharmacokinetic profiles and a lack of impact on serum cortisol concentrations at predicted therapeutic doses. These data suggest that an anti-TNF-GRM ADC may provide improved efficacy beyond anti-TNF alone in immune mediated diseases while minimizing systemic side effects associated with standard GC treatment.


Assuntos
Anticorpos , Artrite Experimental , Imunoconjugados , Esteroides , Humanos , Animais , Camundongos , Preparações Farmacêuticas , Receptores de Glucocorticoides/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico
7.
Physiol Plant ; 176(2): e14253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480459

RESUMO

Ferns are primitive vascular plants with diverse morphologies and structures. Plant anatomical traits and their linkages can reflect adaptation to the environment; however, these remain are still poorly understood in ferns. The main objective of this study was to explore whether there was structural coordination among and within organs in fern species. We measured 16 hydraulically related anatomical traits of pinnae, petioles, and roots of 24 representative fern species from the tropical and subtropical forest understory and analyzed trait correlation networks. In addition, we examined phylogenetic signals for the anatomical traits and analyzed co-evolutionary relationships. These results indicated that stomatal density and all petiole anatomical traits exhibited significant phylogenetic signals. Evolutionary correlations were observed between the tracheid diameter and wall thickness of the petiole and between the water transport capacity of the petiole and stomatal density. Conversely, anatomical traits of roots (e.g., root diameter) showed no phylogenetic signals and were not significantly correlated with those of the pinnae and petioles, indicating a lack of structural coordination between the below- and above-ground organs. Unlike angiosperms, vein density is unrelated to stomatal density or pinna thickness in ferns. As root diameter decreased, the cortex-to-stele diameter ratio decreased significantly (enhanced water absorption) in angiosperms but remained unchanged in ferns. These differences lead to different responses of ferns to climate change and improve our knowledge of the water adaptation strategies of ferns.


Assuntos
Gleiquênias , Magnoliopsida , Traqueófitas , Gleiquênias/fisiologia , Filogenia , Evolução Biológica , Água
8.
World J Gastroenterol ; 30(6): 565-578, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38463028

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM: To investigate the impact of JOSD2 on the progression of ESCC. METHODS: Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS: Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION: JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Enzimas Desubiquitinantes/genética , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases
9.
Stem Cell Res Ther ; 15(1): 31, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317221

RESUMO

BACKGROUND: Transcription factors HAND1 and HAND2 (HAND1/2) play significant roles in cardiac organogenesis. Abnormal expression and deficiency of HAND1/2 result in severe cardiac defects. However, the function and mechanism of HAND1/2 in regulating human early cardiac lineage commitment and differentiation are still unclear. METHODS: With NKX2.5eGFP H9 human embryonic stem cells (hESCs), we established single and double knockout cell lines for HAND1 and HAND2, respectively, whose cardiomyocyte differentiation efficiency could be monitored by assessing NKX2.5-eGFP+ cells with flow cytometry. The expression of specific markers for heart fields and cardiomyocyte subtypes was examined by quantitative PCR, western blot and immunofluorescence staining. Microelectrode array and whole-cell patch clamp were performed to determine the electrophysiological characteristics of differentiated cardiomyocytes. The transcriptomic changes of HAND knockout cells were revealed by RNA sequencing. The HAND1/2 target genes were identified and validated experimentally by integrating with HAND1/2 chromatin immunoprecipitation sequencing data. RESULTS: Either HAND1 or HAND2 knockout did not affect the cardiomyocyte differentiation kinetics, whereas depletion of HAND1/2 resulted in delayed differentiation onset. HAND1 knockout biased cardiac mesoderm toward second heart field progenitors at the expense of first heart field progenitors, leading to increased expression of atrial and outflow tract cardiomyocyte markers, which was further confirmed by the appearance of atrial-like action potentials. By contrast, HAND2 knockout cardiomyocytes had reduced expression of atrial cardiomyocyte markers and displayed ventricular-like action potentials. HAND1/2-deficient hESCs were more inclined to second heart field lineage and its derived cardiomyocytes with atrial-like action potentials than HAND1 single knockout during differentiation. Further mechanistic investigations suggested TBX5 as one of the downstream targets of HAND1/2, whose overexpression partially restored the abnormal cardiomyocyte differentiation in HAND1/2-deficient hESCs. CONCLUSIONS: HAND1/2 have specific and redundant roles in cardiac lineage commitment and differentiation. These findings not only reveal the essential function of HAND1/2 in cardiac organogenesis, but also provide important information on the pathogenesis of HAND1/2 deficiency-related congenital heart diseases, which could potentially lead to new therapeutic strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células-Tronco Embrionárias Humanas , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo
10.
Nutr Diabetes ; 14(1): 5, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413565

RESUMO

OBJECTIVE: To investigate the association of timing, frequency, and food quality of night eating with all-cause, cancer, and diabetes mortality. METHODS: This study included 41,744 participants from the US National Health and Nutrition Examination Survey (2002-2018). Night eating information was collected by 24-h dietary recall and the exposures were timing, frequency, and food quality of night eating. Food quality was assessed by latent class analysis. The outcomes were all-cause, cancer, and diabetes mortality, which were identified by the National Death Index and the International Classification of Diseases 10th Revision. Adjusted hazard ratios [aHR] with 95% confidence intervals [CI] were computed by Cox regression. RESULTS: During a median follow-up of 8.7 years, 6066 deaths were documented, including 1381 from cancer and 206 from diabetes. Compared with no night eating (eating before 22:00), the later timing of night eating was associated with higher risk of all-cause and diabetes mortality (each P-trend <0.05) rather than cancer mortality, with the highest risk of eating being 00:00-1:00 (aHR 1.38, 95% CI 1.02-1.88) and being 23:00-00:00 (aHR 2.31, 95% CI 1.21-4.40), respectively. However, the increased risks were not observed for 22:00-23:00. Likewise, one time or over frequency of night eating was associated with higher all-cause and diabetes mortality (each P < 0.05). That risks were further observed in high-dietary-energy-density group of night eating (all-cause mortality: aHR 1.21 [95% CI 1.06-1.38]; diabetes mortality: aHR 1.97 [95% CI 1.13-3.45]), but not in low-dietary-energy-density group. Finally, correlation analysis found positive associations of night eating with glycohemoglobin, fasting glucose, and OGTT. CONCLUSIONS: Night eating was associated with increased all-cause, cancer and diabetes mortality; however, reduction of excess mortality risk was observed when eating before 23:00 or low-dietary-energy-density foods.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Neoplasias , Humanos , Doenças Cardiovasculares/etiologia , Inquéritos Nutricionais , Neoplasias/complicações , Diabetes Mellitus/epidemiologia , Qualidade dos Alimentos
11.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38281245

RESUMO

Tropical karst habitats are characterized by limited and patchy soil, large rocky outcrops and porous substrates, resulting in high habitat heterogeneity and soil moisture fluctuations. Xylem hydraulic efficiency and safety can determine the drought adaptation and spatial distribution of woody plants growing in karst environments. In this study, we measured sapwood-specific hydraulic conductivity (Ks), vulnerability to embolism, wood density, saturated water content, and vessel and pit anatomical characteristics in the branch stems of 12 evergreen tree species in a tropical karst seasonal rainforest in southwestern China. We aimed to characterize the effects of structural characteristics on hydraulic efficiency and safety. Our results showed that there was no significant correlation between Ks and hydraulic safety across the tropical karst woody species. Ks was correlated with hydraulic vessel diameter (r = 0.80, P < 0.05) and vessel density (r = -0.60, P < 0.05), while the stem water potential at 50 and 88% loss of hydraulic conductivity (P50 and P88) were both significantly correlated with wood density (P < 0.05) and saturated water content (P = 0.052 and P < 0.05, respectively). High stem water storage capacity was associated with low cavitation resistance possibly because of its buffering the moisture fluctuations in karst environments. However, both Ks and P50/P88 were decoupled from the anatomical traits of pit and pit membranes. This may explain the lack of tradeoff between hydraulic safety and efficiency in tropical karst evergreen tree species. Our results suggest that diverse hydraulic trait combination may facilitate species coexistence in karst environments with high spatial heterogeneity.


Assuntos
Embolia , Árvores , Água , Xilema , Secas , Solo
12.
IET Syst Biol ; 18(1): 14-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193845

RESUMO

The transforming growth factor-ß (TGF-ß) superfamily, including Nodal and Activin, plays a critical role in various cellular processes. Understanding the intricate regulation and gene expression dynamics of TGF-ß signalling is of interest due to its diverse biological roles. A machine learning approach is used to predict gene expression patterns induced by Activin using features, such as histone modifications, RNA polymerase II binding, SMAD2-binding, and mRNA half-life. RNA sequencing and ChIP sequencing datasets were analysed and differentially expressed SMAD2-binding genes were identified. These genes were classified into activated and repressed categories based on their expression patterns. The predictive power of different features and combinations was evaluated using logistic regression models and their performances were assessed. Results showed that RNA polymerase II binding was the most informative feature for predicting the expression patterns of SMAD2-binding genes. The authors provide insights into the interplay between transcriptional regulation and Activin signalling and offers a computational framework for predicting gene expression patterns in response to cell signalling.


Assuntos
RNA Polimerase II , Transdução de Sinais , RNA Polimerase II/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Regulação da Expressão Gênica , Ativinas/metabolismo
13.
Clin Pharmacokinet ; 63(2): 227-239, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184489

RESUMO

OBJECTIVE: HSK7653 is a novel, ultralong-acting dipeptidyl peptidase-4 (DPP-4) inhibitor, promising for type 2 diabetes mellitus with a dosing regimen of once every 2 weeks. This trial investigates the pharmacokinetics (PKs), pharmacodynamics (PDs),and safety of HSK7653 in outpatients with normal or impaired renal function. METHODS: This is a multicenter, open-label, nonrandomized, parallel-controlled phase I clinical study that investigates the pharmacokinetic profiles of HSK7653 after a single oral administration in 42 subjects with mild (n = 8), moderate (n = 10), severe renal impairment (n = 10), and end-stage renal disease (without dialysis, n = 5) compared with matched control subjects with normal renal function (n = 9). Safety was evaluated throughout the study, and the pharmacodynamic effects were assessed on the basis of a DPP-4 inhibition rate. RESULTS: HSK7653 exposure levels including the maximum plasma concentration (Cmax), area under the plasma concentration-time curve from zero to last time of quantifiable concentration (AUC0-t), and area under the plasma concentration-time curve from zero to infinity (AUC0-inf) showed no significant differences related to the severity of renal impairment. Renal clearance (CLR) showed a certain downtrend along with the severity of renal impairment. The CLR of the group with severe renal impairment and the group with end-stage renal disease were basically similar. The DPP-4 inhibition rate-time curve graph was similar among the renal function groups. All groups had favorable safety, and no serious adverse events occurred. CONCLUSIONS: HSK7653 is a potent oral DPP-4 inhibitor with a long plasma half-life, supporting a dosing regimen of once every 2 weeks. Impaired renal function does not appear to impact the pharmacokinetic and pharmacodynamic properties of HSK7653 after a single administration in Chinese subjects. HSK7653 is also well tolerated without an increase in adverse events with increasing renal impairment. These results indicate that dose adjustment of HSK7653 may not be required in patients with renal impairment. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05497297.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Falência Renal Crônica , Insuficiência Renal , Humanos , Área Sob a Curva , China , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacocinética , Hipoglicemiantes/farmacocinética , Rim
14.
Infection ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265608

RESUMO

BACKGROUND AND PURPOSE: The need for dose adjustment of caspofungin in patients with hepatic impairment is controversial, especially for those with Child-Pugh B or C cirrhosis. The purpose of this study was to investigate the safety and efficacy of standard-dose caspofungin administration in Child-Pugh B and C cirrhotic patients in a real-world clinical setting. PATIENTS AND METHODS: The electronic medical records of 258 cirrhotic patients, including 67 Child-Pugh B patients and 191 Child-Pugh C patients, who were treated with standard-dose of caspofungin at the Second Affiliated Hospital of Chongqing Medical University, China, from March 2018 to June 2023 were reviewed retrospectively. The white blood cells (WBC), hepatic, renal and coagulation function results before administration and post administration on days 7, 14 and 21 were collected, and the efficacy was assessed in all patients at the end of caspofungin therapy. RESULTS: Favorable responses were achieved in 137 (53.1%) patients while 34 (13.2%) patients died. We observed that some patients experienced an increase of prothrombin time (PT) or international normalized ratio (INR), or a decrease of WBC, but no exacerbation of hepatic or renal dysfunction were identified and no patient required dose interruption or adjustment because of an adverse drug reaction during treatment with caspofungin. CONCLUSIONS: Standard-dose of caspofungin can be safely and effectively used in patients with Child-Pugh B or C cirrhosis, and we appealed to re-assess the most suitable dosing regimen in this population to avoid a potential subtherapeutic exposure.

15.
Org Lett ; 26(5): 1028-1033, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38285509

RESUMO

A series of sila-annulated phenanthrene imides were synthesized through a three-step synthetic route, which represent a hybrid class of biphenyl-based π-conjugated molecules incorporating an imide unit and silole. A comprehensive investigation of their structural, photophysical, and electronic properties was studied by experiment and theoretical calculations. Notably, sila-annulated phenanthrene imides with significant aggregation-induced emission (AIE) properties were observed.

16.
Biol Pharm Bull ; 47(2): 486-498, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38199251

RESUMO

Resina Draconis is a traditional Chinese medicine, with the in-depth research, its medicinal value in anti-tumor has been revealed. Loureirin A is extracted from Resina Draconis, however, research on the anti-tumor efficacy of Loureirin A is rare. Herein, we investigated the function of Loureirin A in melanoma. Our research demonstrated that Loureirin A inhibited the proliferation of and caused G0/G1 cell cycle arrest in melanoma cells in a concentration-dependent manner. Further study showed that the melanin content and tyrosinase activity was enhanced after Loureirin A treatment, demonstrated that Loureirin A promoted melanoma cell differentiation, which was accompanied with the reduce of WNT signaling pathway. Meanwhile, we found that Loureirin A suppressed the migration and invasion of melanoma cells through the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Taken together, this study demonstrated for the first time the anti-tumor effects of Loureirin A in melanoma cells, which provided a novel therapeutic strategy against melanoma.


Assuntos
Chalconas , Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/metabolismo , Diferenciação Celular , Via de Sinalização Wnt , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Movimento Celular , Linhagem Celular Tumoral
17.
Br J Nutr ; 131(1): 103-112, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37381894

RESUMO

The relationship between erythrocyte membrane n-3 PUFA and breast cancer risk is controversial. We aimed to examine the associations of erythrocyte membrane n-3 PUFA with odds of breast cancer among Chinese women by using a relatively large sample size. A case-control study was conducted including 853 newly diagnosed, histologically confirmed breast cancer cases and 892 frequency-matched controls (5-year interval). Erythrocyte membrane n-3 PUFA were measured by GC. Logistic regression and restricted cubic spline were used to quantify the association between erythrocyte membrane n-3 PUFA and odds of breast cancer. Erythrocyte membrane α-linolenic acid (ALA), docosapentaenoic acid (DPA) and total n-3 PUFA were inversely and non-linearly associated with odds of breast cancer. The OR values (95 % CI), comparing the highest with the lowest quartile (Q), were 0·57 (0·43, 0·76), 0·43 (0·32, 0·58) and 0·36 (0·27, 0·49) for ALA, DPA and total n-3 PUFA, respectively. Erythrocyte membrane EPA and DHA were linearly and inversely associated with odds of breast cancer ((EPA: ORQ4 v. Q1 (95 % CI) = 0·59 (0·45, 0·79); DHA: ORQ4 v. Q1 (95 % CI) = 0·50 (0·37, 0·67)). The inverse associations were observed between ALA and odds of breast cancer in postmenopausal women, and between DHA and oestrogen receptor+ breast cancer. This study showed that erythrocyte membrane total and individual n-3 PUFA were inversely associated with odds of breast cancer. Other factors, such as menopause and hormone receptor status, may warrant further investigation when examining the association between n-3 PUFA and odds of breast cancer.


Assuntos
Neoplasias da Mama , Ácidos Graxos Ômega-3 , Humanos , Feminino , Membrana Eritrocítica , Neoplasias da Mama/epidemiologia , Estudos de Casos e Controles , Modelos Logísticos , China/epidemiologia , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos
18.
J Nutr ; 154(2): 354-368, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065409

RESUMO

BACKGROUND: The processes of tumor growth and circadian rhythm are intimately intertwined; thus, rewiring circadian metabolism by time-restricted feeding (TRF) may contribute to delaying carcinogenesis. However, research on the effect of a TRF cellular regimen on cancer is lacking. OBJECTIVE: Investigate the circadian signatures of TRF in lung cancer in vitro. METHODS: We first developed a cellular paradigm mimicking in vivo TRF and collected cells for transcriptome analysis. We further confirmed the effect on tumor cells upon 6-h TRF-mimicking (6-h TRFM) by real-time PCR, Lumicycle experiments, CCK-8, and flow cytometry assays. RESULTS: We found that A549 lung adenocarcinoma cells treated with 6-h TRFM conditions displayed robust diurnal rhythms of transcriptomes, as well as modulation of the core clock genes relative to other different cellular regimens used in this study, including the fasting-mimicking conditions (ie, short-term starvation) and the serum-free regime. Notably, pathway analysis of oscillating genes exclusively in 6-h TRFM showed that some circadian genes were enriched in tumor-related pathways, such as the oxytocin signaling pathway, HIF-1 signaling pathway, and pentose and glucuronate interconversions. Moreover, in line with the circadian pathway enrichment results, 6-h TRFM robustly inhibited cell proliferation and induced cell apoptosis and cell cycle arrest in lung adenocarcinoma A549 cells, lung adenocarcinoma H460 cells, esophageal carcinoma Eca-109 cells, and breast adenocarcinoma MCF-7 cells. CONCLUSIONS: Our findings provide the first in vitro mimicking medium for TRF intervention and indicate that 6-h TRFM is sufficient to reprogram the circadian signatures of lung adenocarcinoma cells and inhibit the progression of multiple tumors.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Transcriptoma , Jejum , Ritmo Circadiano/genética , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética
19.
Front Aging Neurosci ; 15: 1269952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046466

RESUMO

Alzheimer's disease (AD) is a prevalent neurodegenerative disease account for 60-80% of the total number of people with dementia, but its treatment and prevention strategies are still in a long process of exploration. It has been reported that a healthy lifestyle may be an effective non-pharmacological intervention for the prevention and treatment of AD, including increased physical activity and the consumption of polyphenol-rich foods. This study, therefore, investigated the effects of 8 weeks of moderate-intensity aerobic exercise (EX), administration of chlorogenic acid administration (GCA), and a combination of both (EX+GCA) on ß-amyloid (Aß) deposition, inflammatory factors, oxidative stress markers, neuronal damage, and cognitive performance in the brains of AD model mice (APP/PS1) and which signaling pathways may be responsible for these effects. The study used Western blot to detect the expression of signaling pathway-related proteins, enzyme-linked immunosorbent assay to detect the expression of inflammatory factors, hematoxylin-eosin staining to detect hippocampal neuronal morphology, immunohistochemistry to detect changes in Aß deposition in the hippocampus, an oxidative stress marker kit to detect oxidative stress status and the Morris water maze to detect changes in cognitive performance. This study showed that an 8-week intervention (EX/GCA/EX+GCA) activating the SIRT1/PGC-1α signaling pathway improved oxidative stress, neuroinflammation, Aß deposition, and cognitive performance in mice. However, there was no obvious difference between the EX and GCA groups. In contrast, the combined EX+GCA intervention was significantly better than phase EX or GCA. Our study suggests that although relief of Aß deposition, neuroinflammation, oxidative stress, neuronal damage, and cognitive decline could also be achieved with EX or GCA, the combined EX+GCA intervention showed better results. These relief effects on AD-related conditions may be obtained by mediating the activation of the SIRT1/PGC-1α signaling pathway. This study is the first to explore the improvement of AD-related conditions with a combined lifestyle of EX+GCA. This healthy lifestyle could be a candidate option for the treatment of AD.

20.
Structure ; 31(12): 1523-1525, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065075

RESUMO

Here, we discuss how noise that is caused by radiation damage during cryo-EM data collections accumulates during single-particle analysis (SPA), MicroED, and cryo-ET. For MicroED and SPA, bad data can be identified and excluded during data collection and processing, whereas cryo-ET will require systematic radiation damage assessments that can be derived from SPA.


Assuntos
Imagem Individual de Molécula , Microscopia Crioeletrônica , Coleta de Dados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...